​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

Reducción de términos semejantes

En una expresión algebraica se llaman términos semejantes a todos aquellos términos que tienen igual factor literal , es decir, a aquellos términos que tienen iguales letras (símbolos literales) e iguales exponentes.

Por ejemplo:

6 a 2 b 3 es término semejante con – 2 a 2 b 3 porque ambos tienen el mismo factor literal (a 2 b 3 )

1/3 x 5 yz es término semejante con x 5 yz porque ambos tienen el mismo factor literal (x 5 yz)

0,3 a 2 c no es término semejante con 4 ac 2 porque los exponentes no son iguales, están al revés.

Reducir términos semejantes significa sumar o restar los coeficientes numéricos en una expresión algebraica, que tengan el mismo factor literal.

Para desarrollar un ejercicio de este tipo, se suman o restan los coeficientes numéricos y se conserva el factor literal.

Recordando cómo se suman los números enteros:

Las reglas de suma se aplican únicamente a dos casos: números de igual signo y números con signo distinto .

Las reglas a memorizar son las siguientes:

a) Números de igual signo: Cuando dos números tienen igual signo se debe sumar y conservar el signo.

Ejemplos:

– 3   +   – 8  =   – 11

( sumo y conservo el signo)

12   +   25  =   37

( sumo y conservo el signo)

– 7   +   12   =   5

(tener 12 es lo mismo que tener  +12, por lo tanto, los números son de distinto signo y se deben restar:

12 –  7  =   5

b) Números con distinto signo: Cuando dos números tienen distinto signo se debe restar y conservar el signo del número que tiene mayor valor absoluto :

Ejemplos:

5   +   – 51   =   – 46

( es negativo porque el 51 tiene mayor valor absoluto)

– 14  +   34   =    20

Recordando cómo se resta:

Para restar dos números o más, es necesario realizar dos cambios de signo porque de esta manera la resta se transforma en suma y se aplican las reglas mencionadas anteriormente.

Son dos los cambios de signo que deben hacerse:

a) Cambiar el signo de la resta en suma

b) Cambiar el signo del número que está a la derecha del signo de operación por su signo contrario

Como en: – 3  –  10    =    – 3 +  – 10  =    – 13 ( signos iguales se suma y conserva el signo)

19   – 16    =      19 +  – 16   =     19   –    16    =    3

Ejemplo 1:

xy 3 – 3 x 2 y + 5 xy 3 – 12 x 2 y + 6 Hay dos tipos de factores literales: xy 3 y x 2 y

Hay también una constante numérica: 6

Para resolver este ejercicio se suman los coeficientes numéricos de xy 3 con 5xy 3 y –3 x 2 y con –12 x 2 y .

Hay que tener presente que cuando una expresión no tiene un coeficiente, es decir, un número significa que es 1 (x 3 y = 1 xy 3 ).

xy 3 – 3 x 2 y + 5 xy 3 – 12 x 2 y + 6  = 6 xy 3 + – 15 x 2 y + 6

1 + 5 = 6

– 3 – 12 = – 15

Ejemplo 2:

3 ab – 5 abc + 8 ab + 6 abc –10 + 14 ab – 20 =  25ab + 1abc – 30

Operaciones:

3 + 8 +14 = 25 ab

– 5 + 6     =  + 1 abc

– 10 – 20 = – 30

Ver: PSU: Matemática,

Pregunta 14

Pregunta 08_2006

Materias